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Designing Fe-Based Amorphous Alloys With both
Ultra-High Magnetization and Ultra-Low Coercivity Through
Artificial Intelligence

Shiyu Yang, Bowen Zang, Mingliang Xiang, Fayuan Shen, Lijian Song, Meng Gao,
Yan Zhang, Juntao Huo,* and Jun-Qiang Wang*

Designing soft magnetic alloys with high magnetization and low coercivity is
of special interest for application in high-frequency and high-power electric
and electronic components. In this work, high-precision machine-learning
models based on 536 different Fe-based amorphous alloys are developed. It
reveals that the electronegativity difference (𝜹𝝌 ) and mixing enthalpy (𝚫Hmix)
of the alloying elements play critical roles in determining the saturated
magnetization (Bs) of amorphous alloys. Specifically, smaller 𝜹𝝌 can
strengthen the biased distribution of spin-up and spin-down electrons as is
revealed by ab initio simulations. Based on these findings, a series of
advanced amorphous/nanocrystalline alloys with Bs higher than 1.90 T and
coercivity (Hc) as low as 1.2 A m−1 are designed, which also have good
amorphous forming ability owing to the suitable mixing enthalpy. The
designed alloys with high Bs and low Hc hold promising application potentials
in electronic components of high power density and low energy loss.

1. Introduction

Soft magnetic materials are pivotal in energy transmission and
conversion within electrical and electronic systems.[1] In re-
sponse to the increasingly severe global energy challenges, there
is an imperative shift in modern electronic devices toward minia-
turization, higher operating frequencies, and enhanced energy
efficiency.[2] In this milieu, the development of materials with
exceptional soft magnetic properties is critical to facilitate these
advancements. Specifically, there is an urgent demand for soft
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magnetic materials that combine high sat-
urated magnetization (Bs) and low co-
ercivity (Hc), which is essential to sat-
isfy the dual requirements of high power
density, low loss, and the miniaturization
of devices.[3] For decades, Fe-based amor-
phous/nanocrystalline alloys have emerged
as the most promising candidate alloys for
addressing this challenge due to their excel-
lent soft magnetic properties.[4] Surpassing
traditional materials such as silicon steel
with Hc of ≈40 A m−1, Fe-based amorphous
alloys demonstrate a significant decrease in
core loss and Hc that is usually lower than
10 A m−1, thereby enabling devices to effi-
ciently operate at frequencies up to 10 kHz
without sacrificing energy efficiency or gen-
erating excessive heat.[5] However, the Bs
of Fe-based amorphous/nanocrystalline al-
loys are usually between 1.2–1.7 T which

is lower than silicon steels of 1.8–2.0 T, which restricts their appli-
cation in high-power density equipment.[6] Therefore, designing
new amorphous/nanocrystalline alloys with high Bs and low Hc
is imperative for the subsequent advancements in device perfor-
mance and energy efficiency.[7]

Historically, the development of Fe-based amorphous alloys
has relied on trial-and-error methods, devoid of substantial the-
oretical underpinning.[4,8] This conventional approach has no-
tably impeded the efficient advancement of high Bs amorphous
alloys. The recent upsurge in machine learning (ML) applica-
tions within the realm of materials science is catalyzing a trans-
formative shift.[9] ML has powerful potential in data-driven, of-
fering a more efficient pathway for the accelerated discovery of
novel materials, particularly in the realm of complex disordered
materials.[10]

In this work, we established three distinct ML models to ac-
curately predict the Bs of Fe-based amorphous alloys. Employ-
ing Shapley Additive exPlanations (SHAP) analysis,[11] we pro-
pose practical guidelines for the design of high Bs Fe-based
amorphous/nanocrystalline alloys, specifying the optimal ranges
for critical parameters including Fe content (CFe), mixing en-
thalpy (ΔHmix), and electronegativity difference (𝛿𝜒 ). Following
these data-driven guidelines, we have designed Fe-based amor-
phous/nanocrystalline alloys with ultrahigh Bs of 1.92 T. Our
findings highlight the significance of 𝛿𝜒 as a pivotal indicator
for the Bs in Fe-based amorphous alloys, a factor previously
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Table 1. Parameters calculated from alloy composition as candidate fea-
tures.

Features Denotation and Formula

Atomic concentration Ci, i = Fe, Co, Ni, B,…

Valence electron concentration VEC =
∑

Ci VECi

Mean atomic radius r̄ =
∑

Ciri

Average electronegativity �̄� =
∑

Ci𝜒i

Electronegativity difference 𝛿𝜒 =
∑

Ci|𝜒i − �̄�|
Entropy of mixing Δ Smix =

∑
−RCiln(Ci)

Mixing enthalpy Δ Hmix =
∑

4CiCj∗ΔHmix
ij

underemphasized. Further, first-principles calculations revealed
that, at consistent iron concentrations, Fe-based amorphous al-
loys with minimized 𝛿𝜒 yield a higher Bs. This occurs because
a smaller 𝛿𝜒 can maintain the Fermi level of the alloy at a lower
level, thereby maintaining or even increasing the number of un-
paired electrons in the iron atom, exhibiting a larger total mag-
netic moment.

2. Results and Discussions

In the data mining phase, we collected data from 536 differ-
ent Fe-based amorphous alloys from the literature to construct
an initial dataset. All the collected data are documented in the
Supporting Information. Figure S1a (Supporting Information)
shows the compositional diversity within these alloys along with
the Bs distribution. This study encompasses a dataset of 536 Fe-
based amorphous alloys including 20 different alloying elements
and Bs values ranging from 0.33 to 1.92 T. Six extra input fea-
tures were generated from the initial dataset through Matminer
software,[12] as outlined in Table 1. The correlation between each
pair of input features (X, Y) was assessed by their Pearson corre-
lation coefficient (PCC), calculated using Equation (1).

𝜌(X,Y) =
cov (X, Y)
𝜎X𝜎Y

(1)

In Equation (1), cov(X, Y) signifies the covariance of continu-
ous variables X and Y, while 𝜎X represents the standard devia-
tion of variable X. The PCC of different pairs of input features is
shown in Figure S1b (Supporting Information). A pair of features
with an absolute PCC nearing unity represents a strong linear
correlation between them. Such a correlation suggests that one
feature in the pair should be substituted by the other to stream-
line model complexity and prevent overfitting.[13] Considering
this features such as ΔSmix, CC, CP, and 𝜒 were excluded from the
initial dataset due to their high absolute PCC values—exceeding
0.80—with CFe, 𝛿𝜒 -CC, 𝛿𝜒 -�̄� , �̄� -CP, and CP-CB, respectively. This
strategic refinement of the dataset paved the way for a more ac-
curate and efficient machine-learning process.[14]

Three distinct ML algorithms were applied to predict the Bs of
Fe-based amorphous alloys while concurrently exploring the re-
lationship between the input features and the predictive target.
These three ML algorithms include XGBoost,[15] Random For-
est (RF),[16] and Support Vector Machine (SVM).[17] The detailed
training and optimization process of the machine learning model
can be found in the methods section. Figure 1a–c schematically
shows the predictive performance of the abovementioned three
ML models, both on the training set and the test set. In order
to comprehensively gauge the performance of each model, we
computed two distinct loss functions, the Root Mean Square Er-
ror (RMSE) and the determination coefficient (R2) from the test
set output.

RMSE =

√√√√ 1
n

n∑
i=1

(
yi − ŷi

)2
(2)

R2 = 1 −
Σn

i =0

(
yi − ŷi

)2

Σn
i =0

(
yi − ȳi

)2
(3)

where yi represents the true value of Bs while ŷi represents the
predicted Bs. And ȳi is the average of yi. The smaller the RMSE
the better the model fitting effect. And R2 value lies between 0
and 1. The closer R2 is to 1, the more accurate the model pre-
dicts. The R2 coefficients of all three models are greater than 0.85,

Figure 1. The predictive performance of three models. a) XGBoost, b) RF, c) SVM. The gray spheres and colored spheres represent the performance of
the models in the training set and the test set, respectively. The dashed lines represent y = x. The root mean square error (RMSE) and R2 parameter are
listed in the figure.
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Figure 2. Feature importance and SHAP analysis for different machine learning models. The feature importance rankings of a) XGboost and b) RF
models. CFe, ΔHmix, and 𝛿𝜒 are the top three important factors. c) The distribution of SHAP values for features. Each point represents a sample of iron
based amorphous alloy. The color changes from blue to red, which denotes the feature’s own value increases. The increase in SHAP value indicates a
positive contribution to Bs. d,e,f, The SHAP value for CFe, ΔHmix, and 𝛿𝜒 , respectively.

indicating that the predicted Bs are very consistent with the ex-
perimentally measured Bs, and the root mean square error in
the test set does not exceed 0.12. This indicates that the machine
learning model we trained is effective and reliable for predicting
Bs in Fe-based amorphous alloys. Notably, the predictive data de-
rived from the XGBoost model demonstrated the largest R2 along
with the smallest RMSE. These results collectively indicate the
superior performance of the XGBoost model over the other two
models.

XGBoost and RF models provide interpretable frameworks
that elucidate the decision-making process of the algorithm, of-
fering insights into the potential link between input features and
the predicted Bs. The calculated value of Feature Importance
(FI)[16] quantifies the influence of distinct features on the tar-
get predictions.[18] Figure 2a delineates the feature importance
rankings for the XGBoost model, where CFe, ΔHmix, and 𝛿𝜒
emerge as the most influential features on Bs, a finding cor-
roborated by the RF model analysis, illustrated in Figure 2b. To
bolster the validity of FI evaluations and mitigate biases aris-
ing from singular methodological reliance, Permutation Impor-
tance (PI)[16,19] was employed as an auxiliary evaluative mea-
sure. PI imparts a secondary quantitative dimension to fea-
ture impact assessment by evaluating the reduction in model
accuracy when the values of the features are randomly per-
muted. The consonance of PI rankings with FI, as depicted
in Figure S2 (Supporting Information), reinforces the pre-
established conclusions. An integrative analysis of the results
from both FI and PI evaluations substantiates the criticality of
these three features in predicting Bs for both XGBoost and RF
models.

In response to the paucity of investigations into the effects of
ΔHmix and 𝛿𝜒 on Bs, it is necessary for us to focus our next data
mining work on how these two variables specifically affect Bs. We
employed SHapley Additive exPlanations (SHAP)[20] to interpret
how a single feature affects the output of the model. The SHAP
value of the i-th feature is calculated by

𝜑i =
∑

S⊑F∖i

|S|! (|F| − |S| − 1)!
|F|! [fS∪{i}

(
xS∪{i}

)
− fS

(
xS

)
] (4)

where F is the set of all features, S is the subset of F, S ∪ {i} is the
union of the subset S and the i-th feature, fS∪{i}

(
xS∪{i}

)
is the pre-

dicted value generated when the model considers the i-th feature,
while fS(xS) is the case when the i-th feature is not considered. So,
the meaning of fS∪{i}

(
xS∪{i}

)
− fS

(
xS

)
is the contribution of the i-

th feature to the model output after being added to the feature
subset. |S|!(|F|−|S|−1)!

|F|! represents a weighted average for all possi-
ble differences. These values are instrumental in quantifying the
extent to which each feature sways the model’s forecast above or
below an established baseline. As illustrated in Figure 2c, sam-
ples exhibiting large ΔHmix tend to manifest positive SHAP val-
ues, while those with small ΔHmix display negative SHAP val-
ues. This observation suggests that a larger ΔHmix tends to con-
tribute positively to the predicted Bs of amorphous alloys and
vice versa. Conversely, a smaller 𝛿𝜒 is advantageous for predicting
an enhanced Bs, displaying an inverse relationship compared to
ΔHmix. Figure 2d–f shows the distribution of SHAP values to de-
termine the critical thresholds. It is observed that with the incre-
ment in CFe and Hmix, there is a progressive transition of SHAP
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Figure 3. Calculation of the magnetic properties of alloys doped with different elements. a) Crystal structure modeling of Fe-B-X alloys with doped
atoms. b) The formation process of amorphous alloys simulated by ab initio molecular dynamics. c) The structure of Fe-B-X amorphous alloys formed
by quenching. d, The dependence of total magnetic moment (𝜇total) of alloy on 𝛿𝜒 . The red dots represent alloys doped with transition metal elements,
i.e., Fe92B22X2 and Fe92B20X4 alloys, where X = Zr, Nb, Mo, Al, Ga. Blue squares represent Fe92B24, Fe92B22Si2, and Fe92B22Si4. e) The density of states
(DOS) for Fe92B22Nb2 (𝛿𝜒 = 0.066) and Fe92B22Mo2 (𝛿𝜒 = 0.072) alloys. The dashed line represents Fermi energy. f) The Fermi energy of the alloy shows
an upward trend with the increase of 𝛿𝜒 .

values from the negative to the positive domain, indicating a piv-
otal shift from diminishing to bolstering Bs. The points of this
transition are discerned at 75 at.% for CFe and −18.7 kJ mol−1 for
ΔHmix.

Notably, the circled points in Figure 2e show a decline in the
upward trend of SHAP values when ΔHmix exceeds -14 kJ/mol,
indicating a reduced contribution to Bs. AlthoughΔHmix remains
favorable for Bs in this range, it weakens the glass-forming abil-
ity. Therefore, ΔHmix between -18.7 and −14 kJ mol−1 should be
an optimal balance for high Bs and good glass-forming ability.
For 𝛿𝜒 less than 0.07, the SHAP value rapidly decreases as 𝛿𝜒
increases and tends to stabilize when 𝛿𝜒 is greater than 0.07. It
indicates that a smaller 𝛿𝜒 is more favorable for achieving high
Bs. Consequently, a reasonable criterion can be established based
on these findings to guide the efficient design of Fe-based amor-
phous alloys with superior Bs. These criteria require that CFe
should exceed 75.%, ΔHmix needs to be within the range of −18.7
to −14 kJ mol−1, and 𝛿𝜒 should be less than 0.07.

The relationship between the ΔHmix and Bs can be understood
as an intermediate bridge to balance the amorphous formation
ability. Previous studies[21] have shown that alloys with a higher
negative mixing enthalpy exhibit good amorphous-forming abil-
ity. Therefore, a suitable mixing enthalpy benefits both Bs and
amorphous-forming ability. However, the physical basis for the
negative correlation between 𝛿𝜒 and Bs is relatively unexplored
in prior studies. Thus, to unravel the reliability of this discovery,
ab initio molecular dynamics simulations were utilized to simu-
late the formation of amorphous Fe92B22X2 and Fe92B20X4 alloys

(where X=Zr, Nb, Mo, Al, Ga, Si, B). Figure 3a illustrates the pro-
cess of an alloy transitioning from a crystalline state to an amor-
phous glassy state through melting and subsequent quenching,
as revealed by ab initio molecular dynamics simulations. A more
detailed methodology of the simulation process is provided in the
methods section. Figure S3 (Supporting Information) presents
the pair distribution function g(r) of Fe-Fe atoms in alloys doped
with various elements. The observed g(r) curves are characterized
by an absence of periodic peaks. The first peak is observed con-
sistently between 2.46 to 2.52 Å across all samples. A particularly
notable feature is the splitting observed in the second peak, which
is a deviation from the typical structure of a liquid state. This dis-
tinct splitting in the second peak is a critical indicator, affirming
that the alloys synthesized via our simulation process have suc-
cessfully achieved a well-defined amorphous structure.

As is well known, the Bs of alloys are mainly attributed to the
net magnetic moment of the ferromagnetic elements that make
up the alloy.[22] The total magnetic moment (𝜇total) of the alloy
doped with different elements was calculated by first-principles
calculation. As shown in Figure 3b, after doping transition metal
elements or metalloid elements, the 𝜇total of the alloy shows a
significant decreasing trend as the 𝛿𝜒 increases. This result in-
dicates that, while the iron content remains the same, a smaller
𝛿𝜒 makes iron atoms exhibit larger magnetic moments, thereby
increasing the Bs of the alloy.

The magnetic moment of an iron atom is mainly determined
by the number of unpaired electrons. Thus, the 𝜇total could be
expressed as (N↑-N↓) 𝜇B, where N↑ and N↓ are the numbers of
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up-spin and down-spin valence electrons, respectively; 𝜇B repre-
sents the Bohr magneton. Figure 3c compares the total density
of states for Fe92B22Nb2 (𝛿𝜒 = 0.066, Ef = 6.43, 𝜇total = 180.49𝜇B)
and Fe92B22Mo2 (𝛿𝜒 = 0.072, Ef = 6.64, 𝜇total = 156.38𝜇B) alloys.
Due to the exchange interaction of electron spins, the density of
states for spin up and spin down exhibits an asymmetric distribu-
tion near the Fermi level. In the region below the Fermi level, the
Fe92B22Nb2 alloy exhibits a significantly higher density of states
for spin-up electrons compared to the Fe92B22Mo2 alloy, while the
spin-down electron density of states does not differ significantly.
This indicates that doping Nb leads to a rearrangement of elec-
tron spins, resulting in relatively more spin-up electrons below
the Fermi level and an increase in the number of unpaired elec-
trons. Based on the rigid band model, during the doping process,
as electrons are either added or removed, the Fermi level corre-
spondingly ascends or descends until all additional electrons are
encompassed below the new Fermi level.

As depicted in Figure 3d, the Fermi level increases with the
increase of 𝛿𝜒 . This trend indicates that the doping elements
are introducing more extra electrons, resulting in a rise in the
Fermi level. Therefore, the impact of 𝛿𝜒 on Bs can be attributed
to changes in Fermi energy levels. Before doping, the amorphous
Fe92B24 alloy exhibits an initial 𝛿𝜒 of 0.0689, along with a spe-
cific distribution of electronic states. Below the Fermi level, the
density of states for spin-up electrons exceeds that of spin-down
electrons. When doping occurs – with the dopant atoms replac-
ing boron atoms – and if the resulting alloy has a larger 𝛿𝜒 while
maintaining the same number of iron atoms, this leads to an
elevation of the Fermi level. Such an elevation results in more
spin-down electrons occupying states below the Fermi level, im-
plying that some electrons move into the 3D orbitals of Fe atoms
to pair with unpaired electrons, thereby reducing the total num-
ber of unpaired electrons. Conversely, if doping leads to a lower
𝛿𝜒 in the alloy, it suggests a more even distribution of the abil-
ity to attract or donate electrons among atoms. In this scenario,
the Fermi level tends to remain stable or even decrease. This sta-
bility or reduction can maintain or even increase the number of
unpaired electrons. As a result, the alloy may exhibit a larger𝜇total.
This relationship between the doping process, 𝛿𝜒 , Fermi level
changes, and the distribution of unpaired electrons is crucial for
understanding and manipulating the magnetic properties of Fe-
based amorphous alloys.

Figure 4 shows the distribution of Bs in dimensions of ΔHmix,
CFe, and 𝛿𝜒 for the 536 alloys. It is evident that higher Bs are
mainly found in regions with higher Fe content and smaller 𝛿𝜒 .
In alignment with these guidelines, we designed 6 distinct Fe-
based amorphous alloys with -14 kJ/mol >ΔHmix > −15 kJ mol−1

and 0.04 < 𝛿𝜒 < 0.065. Additionally, due to the strong ferro-
magnetic exchange interaction between Co and Fe,[23] we sub-
stitute part of Fe with Co to enhance the alloy’s Bs. The XRD
patterns of the melt-spun ribbons of these alloys are presented
in Figure 5a. All XRD patterns demonstrate a diffused peak
at 2𝜃 = 44–45° representing a mostly amorphous structure.
Figure 4b presents the DSC curves of the six alloys, with their
crystallization temperatures ranging from ≈360 to 380 °C. Ac-
cordingly, subsequent annealing temperatures were set between
340 and 420 °C, with an annealing time of 15 min. A longi-
tudinal external magnetic field of ≈400 A m−1 is applied dur-
ing annealing. The annealing can mitigate magneto anisotropy

Figure 4. The distribution of Bs for Fe-based amorphous alloys in the di-
mensions of CFe,ΔHmix and 𝛿𝜒 space. The red spheres represent the alloys
designed in this work, while the black open circle represent the projections
on each 2D panel.

energy fluctuation caused by internal stresses, thus making
the locally induced anisotropies coherent.[23a,24] Upon increas-
ing the annealing temperature, the Hc of the alloy exhibited an
initial decline followed by an increase, suggesting an optimal
annealing temperature at which Hc was substantially reduced
from a range of 13–27 to 1.2–5.6 A m−1, as demonstrated in
Figure 5c. The coercivity is much lower than crystalline silicon
steels.

The magnetization curves of the annealed samples with the
lowest Hc are shown in Figure 5d. Each alloy exhibits a Bs
value exceeding 1.85 T, thereby affirming the effectiveness of our
data-driven design strategy. Notably, the (Fe82Co18)85.5Ni1.5B9P3C1
and Fe69Co16Ni1Si3B11 alloys exhibit ultrahigh Bs of ≈1.92 T.
The experimental Bs values are in congruence with those pre-
dicted by machine learning, as depicted in Figure 1a. The
bright-field TEM images and the selected-area electron diffrac-
tion pattern of a representative alloy, (Fe82Co18)85.5Ni1.5B9P3C1,
are depicted in Figure 5e. As-spun ribbons reveal no dis-
cernible crystalline phases. The diffraction pattern is ring-like,
confirming a long-range disordered atomic arrangement, typi-
cal of an amorphous structure. The annealed ribbons formed
fine grains smaller than 20 nm within the amorphous ma-
trix, reducing effective anisotropy and lowering Hc. The sparse
grain distribution further weakens grain boundary pinning,
enabling the (Fe82Co18)85.5Ni1.5B9P3C1 alloy to achieve high
Bs with low coercivity. Figure 5f compares the Bs and Hc
values for various iron-based amorphous and nanocrystalline
alloys.[23a,25] The amorphous/nanocrystalline alloy developed in
this study achieves a Bs notably superior to that of the major-
ity of conventional nanocrystalline and cobalt-containing amor-
phous alloys. Additionally, its low coercivity is comparable to
that of the extensively applied Finemet-type nanocrystalline
alloys.

In this work, although the current model and composi-
tional design criteria primarily focus on Fe-based alloys, the
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Figure 5. Properties of designed Fe-based alloys with desirable ΔHmix and 𝛿𝜒 . a) The XRD patterns of the melt-spun ribbons. b) The DSC curves of the
melt-spun ribbons. c) The variation of coercivity with annealing temperature. d) The magnetization curves of samples annealed at optimal temperature.
e) The bright-field TEM image and the selected-area electron diffraction pattern of (Fe82Co18)85.5Ni1.5B9P3C1. f) The comparison of Bs and Hc of soft
magnetic Fe-based amorphous/nanocrystalline alloys.

generalization capability of the model is expected to be signifi-
cantly enhanced by expanding the dataset to include more non-
Fe-based alloy systems, such as Co-based and Ni-based alloys, and
by extracting more universal physical parameters through fea-
ture engineering. This will facilitate the development of a gener-
alized model applicable to multiple alloy systems. Furthermore,
integrating advanced methods such as cross-system data consol-
idation and transfer learning will further improve the adaptabil-
ity and predictive accuracy of the model across different alloy
systems.

3. Conclusion

We have successfully developed three machine learning mod-
els to predict advanced Fe-based amorphous alloys with high Bs.
Three key factors, e.g. CFe, ΔHmix, and 𝛿𝜒 are identified that ex-
hibit a close relationship with the Bs. First-principles simulations
further support this finding. Specifically, when the iron content is
held constant, iron-based amorphous alloys with smaller 𝛿𝜒 tend
to have more unpaired electrons in the iron atoms and increase
the alloy’s total magnetic moment. Based on the established cri-
teria, three distinct alloy systems, Fe-Co-Ni-Si-B, Fe-Co-Ni-B-P-C,
and Fe-Co-N-B-P-C-V, have all achieved high Bs exceeding 1.90 T,
highlighting the broad applicability and effectiveness of our de-
sign strategy across different compositions. Additionally, under
magnetic field annealing, the coercivity Hc can be reduced to as
low as 1.2 A/m. The combination of ultra-high Bs and extremely
low Hc makes the alloys have promising application potential.

4. Experimental Section
The Training Process of Machine Learning Models: To initiate the ma-

chine learning process, a comprehensive dataset was first compiled by ex-
tracting necessary physical features from the initial dataset. This dataset
was partitioned into a training set and a test set with an 8:2 ratio. The
training set was used to optimize the hyperparameters of each ML algo-
rithm by employing a random search method and minimizing the root
mean square error RMSE of model output. The test set serves to evaluate
its predictive accuracy. Throughout the training and optimization phases,
a 5-fold cross-validation was implemented to ensure the robustness and
reliability of the model.

The machine learning code for this study was developed using the
scikit-learn[26] framework in Python. Additionally, the physical parameters
of the alloys included in the dataset were calculated using Matminer,[12] a
tool designed for materials data mining.

Sample Preparation: The alloy ingots were synthesized by arc melt-
ing a mixture of high-purity elements: Fe (99.99 wt.%), Co (99.95 wt.%),
Ni (99.99 wt.%), Si (99.99 wt.%), B (99.99 wt.%), and Fe3P (99.5 wt.%)
under an argon atmosphere. Ribbon samples, ≈0.8 mm in width and
22–25 μm in thickness were produced using a single-roller melt spinning
technique, with the copper wheel rotating at a linear velocity of 52 m−1s.
According to the empirical formula proposed by William Johnson,[27] Rc =
dT/dt (K/s) = 10/D2 (cm), the cooling rate was estimated to be between
1.6-2.1 × 106 K s−1. The density of these alloys was measured using the
Archimedes method. Over five tests for each batch of alloy were conducted
to ensure accuracy and consistency. The average value of these measure-
ments was taken as the density of the alloys. The density of the designed
alloys was between 7.738 and 7.789 g cm−3. The measurement uncertainty
in Bs, caused by density measurements, was ≈±0.03 T. The

Structural Characterization: The amorphous structure of the as-
quenched ribbon samples was identified by XRD (Bruker D8 ADVANCE)
with the Cu-K𝛼 radiation. Magnetic-field-assisted heat treatment was
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made at 340–420 °C for 15 mins. The samples were annealed in a tubular
annealing furnace with a vacuum of 5 × 10−3 Pa. The microstructure of
annealed alloys was investigated by TEM (Talos F200X) The TEM samples
were prepared by the Focused Ion Beam (FIB, Carl Zeiss Auriga).

Magnetic Property Tests: The Bs of the ribbons were measured by using
a vibrating sample magnetometer (VSM, Lake Shore 7410) at a maximum
magnetic field of 800 kA m−1 (10 kOe). The Hc of the ribbons was mea-
sured by DC B-H tracers (Linkjoin MATS-2010SD) at a magnetic field of
800 A m−1.

First Principles Calculation: Using VASP,[28] quenched amorphous al-
loy formation was simulated via ab initio molecular dynamics. Starting
with a Fe23B6 crystal structure from the Materials Project.[29] Expand it
fourfold to obtain a Fe92B24 supercell. Two or Four boron atoms were sub-
stituted with Zr, Nb, Mo, Al, Ga, or Si to change the alloy’s 𝛿𝜒 . The struc-
ture was then optimized in the NPT ensemble using a conjugate gradient
algorithm for rationality. This was followed by molecular dynamics simula-
tions in the NVT ensemble, involving melting the alloy at 3000 K for 2 ps,
cooling from 3000 K to 1300 K over 1 ps, stabilizing at 1300 K for 1 ps,
and quenching to 300 K at a 2 × 1014 K s−1 rate in 6ps. The amorphous
alloys were subjected to structural relaxation after quenching to ensure a
more rational configuration of the amorphous structure. Finally, a two-step
static calculation was performed, self-consistent and non-self-consistent,
to determine the total magnetic moment and density of states of the alloy.

In all computational processes, electron interactions were charac-
terized using the Perdew-Burke-Ernzerhof (PBE) functional,[30] a refine-
ment of the Generalized Gradient Approximation (GGA) for exchange-
correlation. Given the sufficient size of the supercell, only the Gamma
point was considered in the Brillouin zone. All molecular dynamics simu-
lations employed a Nosé–Hoover thermostat to control temperature.[31]

Both the structural optimization and magnetic calculations took into ac-
count electron spin polarization.
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Supporting Information is available from the Wiley Online Library or from
the author.
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