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This study introduces the development of a novel, all-metal FeggCosZr;Al; amorphous alloy designed for
room-temperature magnetic refrigeration application, highlighting the potential of all-metal Fe-based amor-
phous alloys in magnetic refrigeration applications. By innovatively adjusting the Curie temperature and
enhancing the saturation magnetic flux density through Co addition, this work pioneers a strategy to develop
all-metal Fe-based amorphous alloys with room-temperature magnetocaloric effect, historically focused on
Fe-metalloid configurations with limited breakthroughs. The all-metal FeggCo4Zr;Al; amorphous alloy, syn-
thesized via a melt-spinning technique, demonstrates exceptional magnetocaloric effect properties, including a
Curie temperature of 303 K, a maximum isothermal magnetic entropy change of 3.23 J kg™l-K™}, and the
refrigerant capacity of 650 J kg~! under an applied magnetic field change of 5 T. These properties, combined
with negligible hysteresis loss and lower costs due to the absence of rare earth elements, position the alloy as a

promising candidate for room-temperature magnetic refrigerants.

1. Introduction

Magnetic refrigeration is a newly developed refrigeration technology
and is regarded as a promising alternative for the traditional vapor—cycle
refrigeration [1]. Due to the great advantages such as environmental
friendliness and relatively high efficiency than the traditional vapor
expansion—-compression cycle, room temperature magnetic refrigeration
technology based on the magnetocaloric effect (MCE) has attracted
intense research interest [2-4]. Therefore, experts working on the
magnetic cooling technology have paid more attentions in recent years
on the novel magnetocaloric materials that can be applied as magnetic
refrigerants near the ambient temperature. To date, several intermetallic
compounds, such as Gd-Si-Ge [5], La-Ca-Mn-O [6], Ni-Mn-Ga [7],
La—Fe-Si [8], Mn-Fe-P-As [9], Ni-Mn-Sn [10], have been found to
exhibit a giant MCE based on the first-order magnetic phase transitions
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(FOMT). However, the inherent large thermal and magnetic hysteresis
associated with FOMT limits the operational frequency and refrigeration
efficiency of these materials in refrigeration applications [11]. In
contrast, amorphous alloys as magnetic refrigeration materials, char-
acterized by second-order magnetic phase transformations (SOMT),
present superior attributes over FOMT materials. These include small
magnetic and thermal hysteresis, an expansive working temperature
span, enhanced refrigeration capacity (RC), elevated electrical re-
sistivity, corrosion resistance, and the capability to adjust the transition
temperature through alloying [12-15].

The quest for efficient room-temperature refrigeration is critical due
to its vast potential in civilian applications. Amorphous alloys, pivotal in
magnetic refrigeration, can be broadly categorized into rar-
e—earth-metal (RE) based and transition-metal (TM) based varieties.
RE-based amorphous alloys, including Gd- [16-18], Tb- [19], and
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Dy-based [20], are distinguished by their exceptional magnetic entropy
change and refrigeration capacity at lower temperatures. However,
these alloys exhibit diminishing magnetocaloric properties as their Curie
temperatures (T,) are adjusted towards room temperature, alongside the
drawback of high raw material costs. In contrast, TM-based amorphous
alloys are more economically viable, offering a wide range of compo-
sition adjustments. Their T, can be readily modified to desired levels
through the incorporation of other elements, without significantly
compromising their beneficial MCE [21-25]. Unfortunately, |ASH®| of
these TM-based amorphous alloys is insufficient for their application in
magnetic refrigerator. Therefore, low cost amorphous magnetic re-

frigerants with improved formability |ASH®| and appropriate T are
essential for the commercial application of these alloys in domestic
magnetic refrigerators.

Recent years have witnessed the development of numerous multi-
component amorphous alloys with room-temperature MCE, particularly
within the Fe-Zr-B system (Nanoperm-type) [4,25-32]. Introducing
antiferromagnetic or paramagnetic elements (Mn, Cr, Zr, Nb, Ta, etc.)
into Fe-Zr-B amorphous alloys can depress T, close to room tempera-
ture, enabling near room-temperature MCE [12,22,25,26,30-32].
However, these alloys exhibited a modest MCE at room temperature. To
enhance both the MCE and RC, rare earth elements with significant
atomic magnetic moments (e.g., La, Ce, Sm, and Gd) are incorporated
into Fe-Zr-B amorphous alloys [23,33-35]. However, the addition of
rare earth elements increases the viscosity of the alloy melt and the risk
of reaction with the crucible, making complicating sample preparation.
More recently, a novel high Fe content FegsMogSi;ByP2C; amorphous
alloy with a room-temperature MCE had been developed, demon-
strating relatively high MCE and RC, attributable to its high Fe content
[36]. Despite these advancements, significant progress in this domain
remains limited, with the focus primarily on Fe-metalloid (Si, B, P, and
C) type amorphous alloys. However, the addition of excessive metalloid
elements can have significant negative effects on the properties of
amorphous alloys [3,24,36], such as reducing soft magnetic properties
and increasing alloy brittleness, thereby affecting the material’s
work-ability and practicality. Especially in the pursuit of high saturation
magnetization alloy design, when the Fe content exceeds 85 at. %, the
amorphous formation ability of the material has approached its theo-
retical limit [3], which poses significant challenges for alloy design.
Compared with Fe-metalloid (Si, B, P, and C) type amorphous alloys, all
metal Fe-based amorphous alloys exhibit superior toughness and plas-
ticity due to their metal bonding characteristic [37], which will be more
conducive to expanding their application fields. Recently, Yang [38]
reported an all metal Feg;_ZroCuy amorphous alloys showing promising
MCE at low temperatures, yet their T, is well below room temperature,
rendering them unsuitable for ambient-temperature applications.

In the present work, we have developed an innovative all-metal
FeggCo4ZryAl; amorphous alloy, which exhibits an outstanding MCE at
room temperature, surpassing the performance of existing Fe-based
amorphous alloys in this regard. The findings of this work are expected
to provide valuable insights and serve as a foundational guide for the
development of novel amorphous alloys with room-temperature MCE.

2. Experiment procedures

Ingots with nominal compositions of Fegy yCoxZr7Al; (x =0, 3, 4 and
5 at. %) were synthesized by arc melting the mixture of pure metals
(99.99 wt %) in a Ti-gettered argon atmosphere. To ensure homogene-
ity, each ingot was remelted five times. Amorphous ribbons, approxi-
mately 1 mm in width and 25 pm in thickness, were fabricated via the
single-roller melt-spinning method with a surface speed of 50 m/s
under an argon atmosphere.

The amorphous nature of the melt-spun ribbons was verified by
X-ray diffraction (XRD, Bruker D8 advance diffractometer) with Cu K,
radiation. Thermal analysis was performed using a differential scanning
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calorimeter (DSC, 404 C, Netsch) at a heating rate of 40 K/min. The
temperature and field dependences of the DC magnetization of the
samples were measured using a superconducting quantum magnetom-
eter (SQUID, MPMS XL-7). The temperature dependence of the
magnetization (M-T) of the samples was measured under a field of 200
Oe in the temperature range of 100-400 K. The isothermal magnetiza-
tion (M — H) curves were acquired at various temperatures under a
maximum field of 5 T. The isothermal magnetic entropy change versus
temperature (ASy-T) curve under different applied fields was derived
from the isothermal magnetization data at different temperatures using
the Maxwell relation [39]. The RC is defined as the product of the
half-peak width of the ASy curve and the peak ASy for the samples
[401.

3. Result and discussion

Fig. 1 presents the XRD patterns and the DSC curves of as—quenched
(AQ) Fegy xCoxZr;Al; (x =0, 3,4 and 5 at. %) ribbons. As shown in Fig. 1
(a), there are only broad halo peak without sharp diffraction peak of
crystallization in the XRD patterns of all the samples, revealing a fully
amorphous nature. Fig. 1(b) displays the thermal scan curves of the AQ
ribbon samples. The multiple distinct exothermic peaks can be observed
in each DSC curve, which further confirms the glassy nature of the
samples.

Fig. 2 (a) shows the hysteresis loop of the AQ Fegy xCoxZr;Al; (x =0,
3, 4 and 5 at. %) amorphous ribbons at a temperature of 10 K. The M; of
the FeCoZrAl amorphous ribbons monotonously increases from 117.3 to
151.5 emu/g with the increase of Co content from 0 to 5 at. %, indicating
the excellent soft magnetic properties. Fe-based amorphous alloys are
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Fig. 1. (a) The XRD pattern of Fegy ,CoyZr;Al; (x = 0, 3, 4 and 5 at. %)
amorphous alloy ribbons; (b) DSC thermodynamic scanning curve at the
heating rate of 40 K/min.
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Fig. 2. (a) Hysteresis loops at a temperature of 10 K for the AQ Fegy xCoxZr,Al;
(x =0, 3, 4 and 5 at.%) amorphous alloy ribbons; (b) M — T curves and the
corresponding dM/dT - T curves (inset) under an applied field of 200 Oe.

generally considered as weak ferromagnetism, i.e., both spin-up and
spin-down bands are partially filled at the Fermi energy [13] Based on
the band-gap theory [41], the state density of the spin—up band reaches
the maximum while that of the spin-down band reaches the minimum
near the Fermi level for the ferromagnetic materials. Co atom has more
3d electrons than Fe atom, and so the number of electrons occupying the
spin-up band increases more than the spin-down band as Co gradually
replaces Fe in Fe-based amorphous alloys. As a result, the magnetic
moment per magnetic atom of the present FeCoZrAl amorphous alloys
increases with a small amount of Fe replaced by Co.

Fig. 2 (b) shows the M-T curves and dM/dT-T curves (inset) of the
AQ Fegy_xCoxZryAl; (x =0, 3, 4 and 5 at. %) amorphous ribbons under
an applied magnetic field of 200 Oe in the temperature range of
100-400 K. The T, of the Fegy xCoxZryAl; amorphous alloys can be
determined from dM/dT-T curve to be 178.5 K, 279.5 K, 303.0 K and
333.4 K for x = 0, 3, 4 and 5, respectively. It can see that the T, of the
present all-metal Fe-based amorphous alloys increases with the Co
content. Based on the mean field theory [42], the T. is proportional to
the exchange integral and the average spin moment of magnetic atoms,
i.e. the saturation magnetization. The exchange integral strongly de-
pends on the nearest distance between magnetic atoms. Based on the
well-known Bethe-Slater curve [42], it may expect that the substitution
of Co for Fe will lead to the increased average atomic diameter [43] and
thus the stronger atomic exchange interaction. As a consequence, the
average atomic exchange interaction between magnetic atoms becomes
stronger with the increase of the substitution of Co for Fe. Meanwhile, it
is also shown from Fig. 2 (a) that the saturation magnetization of the
specimens monotonously increases with the Co content. Thus the T,
monotonously rises with increased Co substitution in the present
FeCoZrAl amorphous alloys. The similar results are also found in other
reported studies [44]. It is also noted that the FeggCo4Zr;Al; amorphous
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ribbon has a near room temperature T, of 303.0 K and thus its magne-
tocaloric properties will be further investigated in detail below.

Fig. 3(a) shows the isothermal magnetization curves of the
FeggCo4Zr7Al; amorphous ribbon, in which the applied magnetic field
varies from 0 to 5 T and the measured temperature ranges from 100 K to
400 K. It can be seen that the magnetization of the sample achieves
saturation at low applied magnetic fields when the measured tempera-
ture is below T, while the M — H curves of the sample become linear
when the measured temperature is near and above T, indicating the
transition behavior from ferromagnetic state to paramagnetic state. In
order to understand the type of magnetic transition, the Arrott plots of
the FeggCo4ZryAl; amorphous ribbon derived from the M — H curve are
shown in Fig. 3(b). The positive slopes indicate that the magnetic
transitions in the FeggCo4Zr;Al; amorphous ribbon are of second order
magnetic transition in nature [45]. In addition, the non-hysteresis
phenomenon in SOMT can reduce the magnetic loss, which offers the
possibility of it being a potential magnetic refrigeration material [46].

The magnetic entropy change (ASy) is an essential parameter for
characterizing the MCE of magnetocaloric materials. According to
Maxwell’s equations, the ASy of the studied materials is calculated
using the following equation [47]:

s M(Ty, H)dH — [ M(Ti,;, H)dH
Ti — Tipx

—

0

ASu(T,Hmax) = €))
Where Hy,o is the maximum applied field. By calculating the isothermal
M — H curves of the FeggCosZr;Al; amorphous ribbon at different
temperatures as shown in Fig. 3(a), the (-ASy)-T relationship at various
maximum magnetic fields is presented in Fig. 4. It can be seen from
Fig. 4 that the ASy of the FeggCo4Zr;Al; amorphous ribbon increases
with the maximum applied magnetic field, and the peak value (|ASﬁax })
of the (-ASy)-T curves is around T.. |ASE®| and RC of the FeggCo4Z-
r7Aly amorphous ribbon under the applied field of 2 T and 5 T are about
1.45 J kg~ 1K~ ! and 268 J kg~ !, and 3.23 J kg”1-K'and 650 J kg~ },
respectively. The |AS5*| and RC under the applied field of 2 T and 5 T of
the FeggCo4ZryAl; amorphous ribbon together with some selected
Fe-based and Co-based amorphous alloys with near room temperature
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Fig. 3. M — H curves (a) and Arrott plots (b) of the FeggCo4Zr;Al; amorphous
ribbon measured at various temperatures under the maximum applied field of
ST.
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Fig. 4. The (-AS\)-T curves of the FeggCo4Zr;Al; amorphous ribbon under the
magnetic field changes of 1, 2, 3, 4 and 5 T.

MCE are summarized in Table 1 and present in Fig. 5. It can be seen that
the present FeggCo4Zr;Al; amorphous alloy has relatively large values of
|ASW"| and RC among these amorphous alloys with near room-
—temperature MCE. It can also be noted that, compared with the
Fe-metalloid type amorphous alloy, the present all-metal FeggCo4Zr7Aly
amorphous alloy has a larger RC, which is due to its wide magnetic
transition temperature range. Moreover, the present FeggCosZr;Aly
amorphous alloy does not contain any rare earth elements and thus has
the advantage of low cost.

According to the mean-field theory, the relationship between
|AS$?"‘| and the magnetic field (H) is |AS‘,\‘,}‘"‘|ocHn [50]. By fitting the
experimental data in Fig. 6 with the above relationships, the value of the
exponent n for the FeggCo4Zr;Al; amorphous ribbon is 0.86, which de-
viates greatly from the value of 2/3 predicted by the mean field theory
[42], implying the existence of fluctuations and inhomogeneity in the
magnetic microstructure [48], which may be responsible for the wide
magnetic transition temperature range of the present all-metal Fe-based
amorphous alloys.

It is known that the value of | AS%™ | an alloy is proportional to its M
[40]. The plot of M against \ASﬁ‘“! under the applied magnetic field of
5 T for the present FeggCo4Zr7Al; and some TM-based amorphous alloy

Table 1

Magnetocaloric properties of the present FeggCo4Zr;Al; amorphous alloy and
some several reported Fe-based amorphous alloys with near room-temperature
MCE.

No.  Composition (at. %) T, |asmax| RC (J-kg™H) Ref.
(K) kg LK
2T 5T 2T 5T

1 FeggCo4Zr,Aly 303 1.45 3.20 268 ~650 This

work
2 FeggZroBs 286 1.59 3.17 / / [24]
3 Feg;ZroB, 304 1.67 3.29 / / [24]
4 FegsZrsBs 280 1.3 28 201 551 [30]
5  FegyCoiZrgBs 317 161 324 / / [23]
6 Feg7ZreBeCuy 300 1.6 3.0 208 590 [31]
7 FegeZr;BgCuy 320 1.6 3.1 205 582 [30]
8 FeysTagZroB1oCuy 313 1.04 203 922 2415 [32]
9 Feg;ZrgB4Sm; 308 1.65 3.27 / / [23]
10 Feggla;CesBs 313 / 3.64 / / [33]
11 FegglasCesBs 303 154 393 201 7153  [33]
12 Feg3MogSi; ByP2Cq 300 1.06 2.74 138.2 485.2 [36]
13 Co71MogP4Bg 317 0.47 0.96 41.3 70.5 [48]
14 Fe1Cr;Si4NbsB1o,Ag: 300 / 2.1 / / [49]
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Fig. 5. Comparisons of (a) the maximum magnetic entropy change (|ASH™|)
and (b) refrigerant capacity (RC) for the FeggCosZr;Al; and other metallic
glasses listed in Table 1.
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Fig. 6. (a) Magnetic field dependence of the maximum magnetic entropy
changes (| ASH¥|) for the FeggCo4Zr,Al; amorphous ribbon.

is shown in Fig. 7. The data points corresponding to these TM-based
amorphous alloy are linearly fitted by the least squares method and the
R-square of the fitted straight line is 0.987, indicating a good linear
relationship between the M; and |ASﬁa"}. The present FeggCosZr;Aly
amorphous alloy also follows this linear relationship, suggesting that the
present all-metal Fe-based amorphous alloy has a similar MCE
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under the applied magnetic field of 5 T.

mechanism to Fe-metalloid type amorphous alloys.
4. Conclusion

This study successfully demonstrates the development and charac-
terization of an innovative all-metal FeggCosZr;Al; amorphous alloy,
tailored for room-temperature magnetic refrigeration applications. The
FeggCo4Zr;Al; amorphous alloy ribbon exhibits a T, of 303 K, a M; of
144 emu/g, a | ASE™| of 3.23 Jkg 'K ' and a RC of 650 J kg ! under an
applied field of 5 T. In comparison to existing Fe-based amorphous al-
loys known for their near room-temperature MCE, the all-metal
FeggCo4Zr;Al; amorphous alloy stands out not only for its superior
magnetocaloric performance but also for its composition, which is
devoid of rare-earth and metalloid elements, thereby ensuring both
superior magnetocaloric properties and cost-effectiveness. This work
has opened up new avenues for the development of novel room-
—temperature magnetic refrigeration materials.
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